Rubik PLL: Difference between revisions
Line 215: | Line 215: | ||
:{{blue|Careful with regrip after {{rubik|R2'}} move. The RH ring finger must be under RD edge, and thumb on the FRD corner, such that at the {{rubik|u}} move the slice is pushed by the RH ring finger, and the thumb is holding the BRD corner and not the RD edge with a risk of lock because it would push the RD edge upwards.}} |
:{{blue|Careful with regrip after {{rubik|R2'}} move. The RH ring finger must be under RD edge, and thumb on the FRD corner, such that at the {{rubik|u}} move the slice is pushed by the RH ring finger, and the thumb is holding the BRD corner and not the RD edge with a risk of lock because it would push the RD edge upwards.}} |
||
|width=5% align=center|[[File:pllGd-90.gif]]<br/>'''{{blue|Gd}}''' |
|width=5% align=center|[[File:pllGd-90.gif]]<br/>'''{{blue|Gd}}''' |
||
|} |
|||
== PLL training sequence == |
|||
From [https://www.youtube.com/watch?v=D9E1jYhWghI Victor Colin]: |
|||
{| |
|||
|- |
|||
|Ga ||{{rubik|(R2 u) ...}} |
|||
|- |
|||
|Nb ||{{rubik|(R' U R U') ...}} |
|||
|- |
|||
|Gb ||{{rubik|(F' U' F) ...}} |
|||
|- |
|||
|Gd ||{{rubik|(f R f') ...}} |
|||
|- |
|||
|Gc ||{{rubik|(R2' u' R U') ...}} |
|||
|- |
|||
|Y ||{{rubik|(F R U') ...}} |
|||
|- |
|||
|Ra ||{{rubik|(R U' R' U') ...}} |
|||
|- |
|||
|Ua ||{{rubik|(R2 U') ...}} |
|||
|- |
|||
|Rb ||{{rubik|(R' U2) (R U2) ...}} |
|||
|- |
|||
|Ub ||{{rubik|(R' U R' U') ...}} |
|||
|- |
|||
|Jb ||{{rubik|(R U R' F') ...}} |
|||
|- |
|||
|F ||{{rubik|(R' U' F') ...}} |
|||
|- |
|||
|V ||{{rubik|(R' U R' d') ...}} |
|||
|- |
|||
|Na ||{{rubik|(R U R' U) ...}} |
|||
|- |
|||
|Aa ||{{rubik|x (R' U R') ...}} |
|||
|- |
|||
|Ab ||{{rubik|x R2 ...}} |
|||
|- |
|||
|H ||{{rubik|(M2' U') (M2' U2') ...}} |
|||
|- |
|||
|Z ||{{rubik|(M2' U') (M2' U') ...}} |
|||
|- |
|||
|E ||{{rubik|x' (R U') ...}} |
|||
|- |
|||
|T ||{{rubik|(R U R' U') ...}} |
|||
|- |
|||
|Ja ||{{rubik|(L' U' L F) ...}} |
|||
|} |
|} |
||
Revision as of 21:25, 13 February 2017
This page is dedicated to permute correctly the last layer of the Rubik's cube.
The 21 PLL cases
Source:
- BB: Bob Burton's - cubewhiz.com (including original pictures and comments),
- BM: Badmephisto's algo,
- AK: Andy Klise's algo,
- VC: Victor Colin's algo.
Moves in BOLD are my current favorites.
Probabilities:
- BLUE — p=1/18
- GREEN — p=1/36
- RED — p=1/72
Permutations of edges or corners only
Ua |
(R2 U') (R' U' R U) (R U) (R U' R) (VC video) [y2] (R U' R U) (R U) (R U') (R' U' R2) (BB)
|
(R' U R' U') (R' U') (R' U) (R U R2) (VC video) [y2] (R2 U) (R U R' U') (R' U') (R' U R') (BB)
|
Ub | |
| ||||
Z |
(M2' U) (M2' U) (M' U2) (M2' U2) (M' [U2]) (BB, VC Video) (M2' U') (M2' U') (M' U2') (M2' U2') (M' [U2']) (BB,VC,mirror)
|
(M2' U) (M2' U2) (M2' U) M2' (BB, VC Video) (M2' U') (M2' U2') (M2' U') M2' (BB,VC,mirror)
|
H | |
| ||||
Aa |
x (R' U R') D2 (R U' R') D2 R2 (BB,VC video)
|
x R2 D2 (R U R') D2 (R U' R) (BB,VC Video)
[y'] x (L U' L) D2 (L' U L) D2 L2 |
Ab | |
| ||||
E |
x' (R U') (R' D) (R U R' D') (R U R' D) (R U') (R' D') (BB, VC Video)
|
solved |
Swap one set of adjacent corners
Ra |
R U R' F' R U2 R' U2 R' F R U R U2 R' [U'] (BB)
(R U' R' U') (R U R) D (R' U' R) D' (R' U² R') (VC video)
|
(R' U2) (R U2) (R' F R U R' U') (R' F' R2 [U']) (BB, VC video)
|
Rb | |
| ||||
Ja |
(R' U L') U2 (R U' R') U2 (L R U') (BB) z (D' R U') R2 (D R' D') R2 (U D R') (BB,same with z setup)
(L' U' L F) (L' U' L U) (L F' L2' U L) (VC video VC)
|
(R U R' F') (R U R' U') (R' F) (R2 U') (R' [U']) (BB)
(R U R' F') (R U R' U') (R' F R2 U' R') (VC, edited from Ja perm)
|
Jb | |
| ||||
T |
(R U R' U') (R' F) (R2 U' R' U') (R U R' F') (BB,edited)
|
(R' U' F') (R U R' U') (R' F) (R2 U' R' U') (R U R' U R) (BB,edited)
|
F |
Swap one set of corners diagonally
.
V |
(R' U R' d') (R' F' R2 U') (R' U R' F) (R F) (video VC)
|
(F R U') (R' U' R U) (R' F') (R U R' U') (R' F R F') (BB)
|
Y | |
| ||||
Na |
(z) D (R' U) (R2 D' R D U') (R' U) (R2 D' R U' R) (BB)
z U (R' D) (R2 U' R U D') (R' D) (R2 U' R D' [R]) (cyotheking video)
(R U R' U) (R U R' F') (R U R' U') (R' F R2 U' R') (U2 R U' R) (VC, from youtube chat)
|
(z) U' (R D') (R2' U R' D U') (R D') (R2' U R' D R') (BB)
z U' (R D') (R2 U R' D U') (R D') R2 U R' D [R] (cyotheking video)
(R' U R U') (R' F' U' F) (R U R' F) (R' F' R U' R) (VC video)
|
Nb |
Double spins
To recognize these PLLs:
- Put the HEADLIGHT on the left
- Observe the position of the BLOCK: if it is as the FRONT (resp. FAR RIGHT, BACK and CLOSE RIGHT), then it is a Ga (resp. Gb, Gc and Gd) permutation.
To remember the algorithms, observe the sequence of RIGHT face versus sequence of UP face:
- Ga: R2 R' R' R vs u U U' u'
- Gb: R2 R' R R vs u U U' u' — Quick recognition: BLOCK is on the RIGHT on the face and next to OPPOSITE color!
- Gc: R2' R R R' vs u' U' U u
- Gd: R2' R R' R' vs u' U' U u — Quick recognition: BLOCK is on the LEFT on the face and next to OPPOSITE color! Also, the middle color in the PHARE is opposite (like for the Gb)
Ga |
(R2 u) (R' U R' U' R u') R2' y' (R' U R) (BB,VC video)
|
[y'] (R' U' R) y (R2' u R' U) (R U' R u' R2') (BB)
(F' U' F) (R2' u R' U) (R U' R u' R2') (VC, from an example solve)
|
Gb | |
| ||||
Gc |
(R2' u' R U') (R U R' u R2) (f R' f') (bB)
[y2] R2' F2' R U2 R U2') (R' F R U) (R' U' R' F) R2 (VC,example solve)
|
[y] (R U R') y' (R2' u' R U') (R' U R' u R2) (BB)
(f R f') (R2' u' R U') (R' U R' u R2) (VC video)
|
Gd |
PLL training sequence
From Victor Colin:
Ga | (R2 u) ... |
Nb | (R' U R U') ... |
Gb | (F' U' F) ... |
Gd | (f R f') ... |
Gc | (R2' u' R U') ... |
Y | (F R U') ... |
Ra | (R U' R' U') ... |
Ua | (R2 U') ... |
Rb | (R' U2) (R U2) ... |
Ub | (R' U R' U') ... |
Jb | (R U R' F') ... |
F | (R' U' F') ... |
V | (R' U R' d') ... |
Na | (R U R' U) ... |
Aa | x (R' U R') ... |
Ab | x R2 ... |
H | (M2' U') (M2' U2') ... |
Z | (M2' U') (M2' U') ... |
E | x' (R U') ... |
T | (R U R' U') ... |
Ja | (L' U' L F) ... |
Recognizing the PLL cases
Links
- A *must* see video on how to quickly recognizes the PLL based on features like headlights, bar, pairs...
2-face recognition
Code:
X
denotes same color. For instance,.X. X..
means a corner color matches the center color of adjacent edge.+-
denotes opposite color. For instane,.-. +..
means a corner color is opposite to the center color of adjacent edge.
Features | Solved | Ua | Ub | Z | H | Aa | Ab | E | Ra | Rb | Ja | Jb | T | F | V | Y | Na | Nb | Ga | Gb | Gc | Gd |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Two bars | 4 | |||||||||||||||||||||
Bar + pair | 1 | 1 | ||||||||||||||||||||
Bar + headlight | 2 | 2 | ||||||||||||||||||||
Bar only | 1 | 1 | 2 | |||||||||||||||||||
Corner (same corner color) | 1 | 1 | ||||||||||||||||||||
Corner (2x opposite) | 1 | |||||||||||||||||||||
Two counter pairs | 1 | |||||||||||||||||||||
Two pairs (opposite + adjacent) (i.e. 3 colors) | 2 | 2 | ||||||||||||||||||||
Two pairs (2 x opposite) (i.e. 4 colors) | 4 | 4 | ||||||||||||||||||||
One pair + shared headlight (opposite) | 2 | |||||||||||||||||||||
One pair + shared headlight (adjacent) | 1 | 1 | ||||||||||||||||||||
One pair + headlight (adjacent, 3 colors) | 1 | 1 | ||||||||||||||||||||
One pair + headlight (adjacent, 4 colors) | 1 | 1 | ||||||||||||||||||||
One pair: ++- |
2 | |||||||||||||||||||||
One pair: -++ |
2 | |||||||||||||||||||||
One pair (other cases) | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | ||||||||||||
Two headlights (2x opposite) | 4 | |||||||||||||||||||||
Two headlights (2x adjacent,2 colors) | 2 | |||||||||||||||||||||
Two headlights (2x adjacent,3 colors) | 1 | 1 | ||||||||||||||||||||
Two headlights (2x adjacent,4 colors) | 2 | |||||||||||||||||||||
Two headlights (adjacent + opposite) | 1 | 1 | ||||||||||||||||||||
One headlight | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | ||||||||||||||
Nothing: .X- X+. |
4 | |||||||||||||||||||||
Nothing (other cases) | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
- Draft
|
Solved. | |||||||||||||||
|
Aa. The corner block + headlight, or corner block + opposite color on same face (telling where the headlights are) | |||||||||||||||
|
Ab. The corner block + headlight, or corner block + opposite color on same face (telling where the headlights are) | |||||||||||||||
|
E. No blocks. We see: orange green - orange blue on the corner → orange face must be on the left. | |||||||||||||||
|
Ua |
Recognition
It's very easy to observe two sides. Depending on what you see, it will quickly narrow down the possible cases. The features to observe are:
- The bar: A side with 3 identical color.
- The corner: A corner with 2 adjacent edges of same color.
- The pair: A corner and an adjacent edge of same color.
- The headlight: Two corners of same color.
- Two bars
- The cube is solved. Just AUL as necessary.
- Bar + headlight
- Possible cases are: Ua or Ub
- Ua: if headlight on the right (resp. left) contains adjacent (resp. opposite) colors
- Ub: if headlight on the right (resp. left) contains opposite (resp. right) colors
- Bar + pair
- Possible cases are: Ja or Jb.
- Ja: if bar and pair "connected", and pair on the right, OR bar and pair of different color, and pair on the left
- Jb: if bar and pair "connected", and pair on the left, OR bar and pair of different color, and pair on the right
- A bar only
- One possible case: F.
- A corner
- Possible cases are: Aa, Ab, or V.
- V: the opposite corners adjacent to the corner are of DIFFERENT color:
- Aa: The opposite corners have same color, and the one of the RIGHT is of opposite color compared to adjacent pair.
- Ab: The opposite corners have same color, and the one of the LEFT is of opposite color compared to adjacent pair.
- Two pairs (without corner)
- Possible cases: Ja, Jb, Na, Nb, or Y'
- In all cases but Y, we have either two RIGHT/LEFT stickers of same color + left/right sticker of either OPPOSITE or DIFFERENT color.
- Na: The stickers of same color are on the RIGHT, and the left sticker has the OPPOSITE color on EACH face.
- Nb: The stickers of same color are on the LEFT, and the left sticker has the OPPOSITE color on EACH face.
- Ja: The RIGHT sticker on the right face has a DIFFERENT color.
- Jb: The LEFT sticker on the left face has a DIFFERENT color.
- Y: Easily recognizable since both pairs are adjacent to a same corner.
- Pair + headlight
- Possible cases: Aa, Ab, T, Ra, Rb, Ga, or Gc.
- Aa: Pair is on the RIGHT, and headlight has OPPOSITE color.
- Ab: Pair is on the LEFT, and headlight has OPPOSITE color.
- T: headlight and pair have a common corner, and the edge adjacent to headlight corner is OPPOSITE color.
TBC
- A pair only
- Two headlights
- One headlight only
- Nothing
- E perm if corner has one color identical to one side and one color opposite to the other side. Set up the case by moving the corner and side with identical color on the left or right side.