LaTeX writing tips: Difference between revisions
(Imported sections from LaTeX page) |
|||
(19 intermediate revisions by the same user not shown) | |||
Line 42: | Line 42: | ||
</source> |
</source> |
||
* '''Units''' [http://www.ece.ucdavis.edu/~jowens/commonerrors.html] — Use a non-breaking space between quantity and unit: <code>10~m</code>. Or use package {{deb|siunitx}} package (<code>\SI{10}{m}</code>) |
* '''Units''' [http://www.ece.ucdavis.edu/~jowens/commonerrors.html] — Use a non-breaking space between quantity and unit: <code>10~m</code>. Or use package {{deb|siunitx}} package (<code>\SI{10}{m}</code>) |
||
* '''Numbers''' — Use <code>\num{123456}</code> along with package {{deb|siunitx}}. Or consider using another package like {{deb|numprint}}. |
|||
* Use '''unbreakable space''' in compound names (like <code>Van~Allen</code>) |
* Use '''unbreakable space''' in compound names (like <code>Van~Allen</code>) |
||
* '''Comma as decimal point''' — Surround the comma with braces (or consider using the package {{deb|icomma}}. Additionally, in number list, separate numbers with semicolons: |
|||
<source lang=latex> |
|||
$x_i\in[-1{,}5;1{,}5]$ |
|||
</source> |
|||
== Conventions and Examples == |
== Conventions and Examples == |
||
See also '''{{file|latex_templates}}''' examples. |
|||
__MATHJAX_DOLLAR__ |
__MATHJAX_DOLLAR__ |
||
; |
;Usual conventions |
||
* $\ln x$ is the natural logarithm of $x$; that is, the logarithm of $x$ to the base $e$. |
* $\ln x$ is the natural logarithm of $x$; that is, the logarithm of $x$ to the base $e$. |
||
* $\lg x$ is the logarithm of $x$ to the base $2$. |
* $\lg x$ is the logarithm of $x$ to the base $2$. |
||
* Convention about ''positive'', ''greater than''... |
|||
** ''Positive'' integers are integers ''greater than'' 0, i.e. $$x>0$$. |
|||
** ''Non-positive'' integers are integers ''less than or equal to'' 0, i.e. $$x\le 0$$. |
|||
** ''Negative'' integers are integers ''less than'' 0, i.e. $$x<0$$. |
|||
** ''Non-negative'' integers are integers ''greater than or equal to'' 0, i.e. $$x\ge 0$$. |
|||
: These are the English conventions. The French conventions are different: ''positif'' means $$x\ge 0$$, and ''supérieur'' means ''supérieur ou égal'', and ''strictement supérieur'' excludes equality. |
|||
;Bitsize |
|||
* A $$n$$-bit integer $N$ ... we know the high order $$(1/4+c)(log_2 N)$$ bits of P ... $$\lceil log_2 N \rceil$$-bit integer |
|||
;Integers |
|||
;bitsize |
|||
* A $n$-bit integer $N$ ... we know the high order $(1/4+c)(log_2 N)$ bits of P ... $\lceil log_2 N \rceil$-bit integer |
|||
{| class=wikitable |
|||
;integers |
|||
|- |
|||
* The set of ''integers'' $\Z = \{\dotsc,-2,-1,0,1,2,\dotsc\}$ (source <ref name="proofwiki">ProofWiki, {{bibtit|Symbols:Z — ProofWiki}}, http://www.proofwiki.org/wiki/Symbols:Z, 2013</ref>). |
|||
|$$\mathbb{N\ Z\ Q\ R}$$<br> |
|||
* The set of ''non-negative integers'' is $\Z_{\ge 0} = \{0,1,2,\dotsc\}$ (or $\Z_+$) (source <ref name="proofwiki"/>) |
|||
$$\textsf$\textbf{N Z Q R}}$$ |
|||
* The set of ''strictly positive integers'' is $\Z_{> 0} = \{1,2,\dotsc\}$ (or $\Z_+^*$) (source <ref name="proofwiki"/>) |
|||
|<code>$\mathbb N$</code><br> |
|||
* A ''finite set of integers'' is denoted $\{1,2,\dotsc,n\}$ (source <ref name=HAC/>) |
|||
<code>\textsf{\textbf N}</code> |
|||
** Alternatively one can use $\N_{n}^*$ or $\Z \left({n}\right)$ (source <ref name="proofwiki"/>) |
|||
|Sets in algebra are usually denoted with blackboard typeface. Bold sans-serif is also a possible, but a bit less convenient in $\LaTeX$. |
|||
* The set of ''integers modulo n'' is $\Z_n=\{0,1,2,\dotsc,n-1\}$ (source <ref name="HAC">Menezes, A., van Oorschot, P., Vanstone, S.: {{bibtit|Handbook of Applied Cryptography}}, 1997</ref>) |
|||
| |
|||
* The ''multiplicative group of $\Z_n$'' is $\Z_n^* = \{a \in \Z_n | \gcd(a,n) = 1\}$ (source <ref name=HAC/>) |
|||
|- |
|||
** Also known as the ''set of coprime integers'' to $n$, denoted as $\Z'_n = \{ k \in \Z_n : a \perp n\}$ (source <ref name="proofwiki"/>) |
|||
|$$\mathbb N$$ |
|||
* The set of ''integer multiples'' $n \Z$ (source <ref name="proofwiki"/>) |
|||
|<code>$\mathbb N$</code> |
|||
|The set of ''natural numbers'', including 0, $$\{0,1,2,\dotsc\}$$.<br> |
|||
Other notations include $$\N^0\ \N_0$$. |
|||
| |
|||
|- |
|||
|$$\mathbb N^*$$ |
|||
|<code>$\mathbb N^*$</code> |
|||
|The set of ''positive natural numbers'', $$\{1,2,\dotsc\}$$.<br> |
|||
Other notations include $$\N^+\ \N_1\ \N_{>0}$$. |
|||
| |
|||
|- |
|||
|$$\mathbb Z$$ |
|||
|<code>$\mathbb Z$</code> |
|||
|The set of ''integers'', $\{\dotsc,-2,-1,0,1,2,\dotsc\}$ |
|||
|<ref name="proofwiki">ProofWiki, {{bibtit|Symbols:Z — ProofWiki}}, http://www.proofwiki.org/wiki/Symbols:Z, 2013</ref> |
|||
|- |
|||
|$$\mathbb Z_{\ge 0}$$ |
|||
(or $$\mathbb Z_+$$) |
|||
|<code>$\mathbb Z_{\ge 0}$</code> |
|||
(or <code>$\mathbb Z_+$</code>) |
|||
|The set of ''non-negative integers'', $$\{0,1,2,\dotsc\}$$ |
|||
|<ref name="proofwiki"/> |
|||
|- |
|||
|$$\mathbb Z_{> 0}$$ |
|||
(or $$\mathbb Z^*_+$$) |
|||
|<code>$\mathbb Z_{> 0}$</code> |
|||
(or <code>$\mathbb Z_+^*$</code>) |
|||
|The set of ''strictly positive integers'', i.e. $$\{1,2,\dotsc\}$$ |
|||
|<ref name="proofwiki"/> |
|||
|- |
|||
|$$\{1,2,\dotsc,n\}$$<br> |
|||
(or $$\N_{n}^*$$ or $$\Z \left({n}\right)$$) |
|||
|<code>$\{1,2,\dotsc,n\}$</code> |
|||
|A ''finite set of integers''. |
|||
|<ref name=HAC/><ref name="proofwiki"/> |
|||
|- |
|||
|$$\Z_n$$ |
|||
|<code>$\Z_n$</code> |
|||
|The set of ''integers modulo n'', $$\{0,1,2,\dotsc,n-1\}$$ |
|||
|<ref name="HAC">Menezes, A., van Oorschot, P., Vanstone, S.: {{bibtit|Handbook of Applied Cryptography}}, 1997</ref> |
|||
|- |
|||
|$$\Z_n^*$$ |
|||
|<code>$\Z_n^*$</code> |
|||
| |
|||
The ''multiplicative group'' of $$\Z_n$$, $$\{a \in \Z_n | \gcd(a,n) = 1\}$$<br> |
|||
This is also known as the ''set of coprime integers'' to $$n$$, denoted as $$\Z'_n = \{ k \in \Z_n : a \perp n\}$$ |
|||
|<ref name=HAC/><ref name="proofwiki"/> |
|||
|- |
|||
|$$n \mathbb Z$$ |
|||
|<code>$n \mathbb Z$</code> |
|||
|The set of ''integer multiples'' $$n \mathbb Z$$ |
|||
|<ref name="proofwiki"/> |
|||
|} |
|||
;Tuples |
|||
;tuples |
|||
* a ''2-tuple'' is an ''ordered pair'' (aka. ''couple'' in french, not be confused with ''pair'' where element order does not matter) (source <ref name="wtuple">Wikipedia, https://en.wikipedia.org/wiki/Tuple</ref>). |
* a ''2-tuple'' is an ''ordered pair'' (aka. ''couple'' in french, not be confused with ''pair'' where element order does not matter) (source <ref name="wtuple">Wikipedia, https://en.wikipedia.org/wiki/Tuple</ref>). |
||
* a ''3-tuple'' is a ''triplet'' (source <ref name="wtuple"/>). |
* a ''3-tuple'' is a ''triplet'' (source <ref name="wtuple"/>). |
||
Line 73: | Line 139: | ||
;Matrices |
;Matrices |
||
* Vector or matrix transpose: Use <code>^\top</code> $\mathbf M^\top$ (alt. <code>^\mathsf{T}</code> $\mathbf M^\mathsf{T}$, or <code>^\intercal</code> $\mathbf M^ |
* Vector or matrix transpose: Use <code>^\top</code> $$\mathbf M^\top$$ (alt. <code>^\mathsf{T}</code> $$\mathbf M^\mathsf{T}$$, or <code>^\intercal</code> $$\mathbf M^\intercal$$) [http://tex.stackexchange.com/questions/30619/what-is-the-best-symbol-for-vector-matrix-transpose] |
||
* Vector or matrix conjugate: Use <code>^*</code> $\mathbf A^*$ |
* Vector or matrix conjugate: Use <code>^*</code> $$\mathbf A^*$$ |
||
;Sets |
|||
* Isomorphism between 2 sets: <code>A \cong B</code> $$A \cong B$$, or <code>A \simeq B</code>$$A \simeq B$$. |
|||
;Functions |
|||
* Example of function definitions: |
|||
{| width=100% |
|||
|- |
|||
|width=50%| |
|||
<source lang=latex> |
|||
$$\begin{array}{llll} |
|||
f : & \Z_N \to \Z_N & \qquad f^{-1}: & \Z_N \to \Z_N\\ |
|||
& x \mapsto x^e \bmod N & & x \mapsto x^d \bmod N |
|||
\end{array}$$ |
|||
</source> |
|||
| |
|||
$$\begin{array}{llll} |
|||
f : & \Z_N \to \Z_N & \qquad f^{-1}: & \Z_N \to \Z_N\\ |
|||
& x \mapsto x^e \bmod N & & x \mapsto x^d \bmod N |
|||
\end{array}$$ |
|||
|} |
|||
* Inline function definition: |
|||
{| width=100% |
|||
|- |
|||
|width=50%| |
|||
<source lang=latex> |
|||
$$f : \{0,1\}^* \to \ZZ_{N}$$, $$x\mapsto b^x\bmod N$$ |
|||
</source> |
|||
|align=center| |
|||
$$f$$ is defined as $$f : \{0,1\}^* \to \ZZ_{N}$$, $$x\mapsto b^x\bmod N$$ |
|||
|} |
|||
;Logic |
|||
* <code>\iff</code> and <code>\implies</code> (do not use with other arrows symbols like <code>\Leftrightarrow</code>)) |
|||
{| width=100% |
|||
|- |
|||
|width=50%| |
|||
<source lang=latex> |
|||
$$A \iff B$$ |
|||
$$P \implies Q$$ |
|||
</source> |
|||
| |
|||
$$A \iff B$$ |
|||
$$P \implies Q$$ |
|||
|} |
|||
== References == |
|||
<references/> |
Latest revision as of 07:56, 31 October 2022
Layout and Typesetting
See also: English writing tips
- Maintain the relation 1 paragraph = 1 thought across the document.
- English requires longer space after the dots terminating a sentence (see
\@
); French does not (see\frenchspacing
}. - Add footnote after the word or sentence they refer to (i.e. after the comma or periodrelated to a sentence after the terminating dot.
- Avoid ligatures crossing morpheme boundary in a composite word, like shelfful ([1])
- Use ` and ' or `` and as quotation marks in English (or << and >> in French)
- Use the correct dash for each use (X-rated, page 13--67, yes---or no?, $-1$)
- Use
\dots{}
instead of\dots
to add a space after the dots:
This is the end\dots Bye! # Bad This is the end\dots{} Bye! # Good
- Use the correct semantic
\dotsx
command, depending on context:
We have the series $A_1,A_2,\dotsc$, % for comma list
the sum $A_1+A_2+\dotsb$, % for binary op
the orthogonal product $A_1A_2\dotsm$, % for multiplication dots
the infinite integral $$\int_{A_1}\int_{A_2}\dotsi$$. % for dots with integrals
- Use roman style for 'd' in the differential:
\newcommand{\ud}{\,\mathrm{d}}
\begin{equation*}
\int_a^b f(x)\ud x
\end{equation*}
- Use
\textsubscript{}
or\textsuperscript{}
for subscripts our superscripts outside math (like CO2 or 4th). The preferred option for ordinals in mathematics texts (or even english) seems to use$n$th
or$n$-th
(like nth or n-th) [2], [3], [4]. Yet another option is$n^{\text{th}}$
(with amsmath package). Finally, there is the package nth that can render ordinal with\nth{4}
but it only works with numbers.
The $4$th, or the $4$-th, or the $4^{\text{th}}$ or the $4^{\text{\tiny{th}}}$ or the $4$\textsuperscript{th} or \nth{4}?
- Cut long line by adding a
%
at the cut to avoid LaTeX adding unwanted space where the cut occurs:
\State $u \gets (v_i - x)\cdot C_i \bmod \rsamod_i$, $x \gets x + u \cdot% This comment will prevent LaTex adding space
\prod_{j=1}^{i-1}\rsamod_j$
- When using cleveref, use
\Cref{}
instead of\cref{}
at the beginning of a sentence to enforce capitalization. - Interword spaces [5] — “TeX assumes a period ends a sentence unless it follows an uppercase letter.” (Lamport p. 14). So, put a
\
in a sentence likeSmith et al.\ say that ...
. And, if an uppercase letter ends a sentence, do a\@
before the period:In the class, I gave Bob a C\@.
. - The small package xspace (by David Carlisle) defines the
\xspace
command, for use at the end of macros that produce text. It adds a space unless the macro is followed by certain punctuation characters.[1].
\newcommand\eg{e.g.\@\xspace}
\newcommand\ie{i.e.\@\xspace}
\newcommand\etc{etc.\xspace}
- Units [6] — Use a non-breaking space between quantity and unit:
10~m
. Or use package siunitx package (\SI{10}{m}
) - Numbers — Use
\num{123456}
along with package siunitx. Or consider using another package like numprint. - Use unbreakable space in compound names (like
Van~Allen
) - Comma as decimal point — Surround the comma with braces (or consider using the package icomma. Additionally, in number list, separate numbers with semicolons:
$x_i\in[-1{,}5;1{,}5]$
Conventions and Examples
See also latex_templates examples. __MATHJAX_DOLLAR__
- Usual conventions
- $\ln x$ is the natural logarithm of $x$; that is, the logarithm of $x$ to the base $e$.
- $\lg x$ is the logarithm of $x$ to the base $2$.
- Convention about positive, greater than...
- Positive integers are integers greater than 0, i.e. $$x>0$$.
- Non-positive integers are integers less than or equal to 0, i.e. $$x\le 0$$.
- Negative integers are integers less than 0, i.e. $$x<0$$.
- Non-negative integers are integers greater than or equal to 0, i.e. $$x\ge 0$$.
- These are the English conventions. The French conventions are different: positif means $$x\ge 0$$, and supérieur means supérieur ou égal, and strictement supérieur excludes equality.
- Bitsize
- A $$n$$-bit integer $N$ ... we know the high order $$(1/4+c)(log_2 N)$$ bits of P ... $$\lceil log_2 N \rceil$$-bit integer
- Integers
$$\mathbb{N\ Z\ Q\ R}$$ $$\textsf$\textbf{N Z Q R}}$$ |
$\mathbb N$
|
Sets in algebra are usually denoted with blackboard typeface. Bold sans-serif is also a possible, but a bit less convenient in $\LaTeX$. | |
$$\mathbb N$$ | $\mathbb N$
|
The set of natural numbers, including 0, $$\{0,1,2,\dotsc\}$$. Other notations include $$\N^0\ \N_0$$. |
|
$$\mathbb N^*$$ | $\mathbb N^*$
|
The set of positive natural numbers, $$\{1,2,\dotsc\}$$. Other notations include $$\N^+\ \N_1\ \N_{>0}$$. |
|
$$\mathbb Z$$ | $\mathbb Z$
|
The set of integers, $\{\dotsc,-2,-1,0,1,2,\dotsc\}$ | [2] |
$$\mathbb Z_{\ge 0}$$
(or $$\mathbb Z_+$$) |
$\mathbb Z_{\ge 0}$
(or |
The set of non-negative integers, $$\{0,1,2,\dotsc\}$$ | [2] |
$$\mathbb Z_{> 0}$$
(or $$\mathbb Z^*_+$$) |
$\mathbb Z_{> 0}$
(or |
The set of strictly positive integers, i.e. $$\{1,2,\dotsc\}$$ | [2] |
$$\{1,2,\dotsc,n\}$$ (or $$\N_{n}^*$$ or $$\Z \left({n}\right)$$) |
$\{1,2,\dotsc,n\}$
|
A finite set of integers. | [3][2] |
$$\Z_n$$ | $\Z_n$
|
The set of integers modulo n, $$\{0,1,2,\dotsc,n-1\}$$ | [3] |
$$\Z_n^*$$ | $\Z_n^*$
|
The multiplicative group of $$\Z_n$$, $$\{a \in \Z_n | \gcd(a,n) = 1\}$$ |
[3][2] |
$$n \mathbb Z$$ | $n \mathbb Z$
|
The set of integer multiples $$n \mathbb Z$$ | [2] |
- Tuples
- a 2-tuple is an ordered pair (aka. couple in french, not be confused with pair where element order does not matter) (source [4]).
- a 3-tuple is a triplet (source [4]).
- Graphs (tree...)
- Height of a node = distance to root node; height of the tree = maximum height.
- degree of a node = number of children of a node; node with degree 0 = leaf node; node with no parent = root node.
- Matrices
- Vector or matrix transpose: Use
^\top
$$\mathbf M^\top$$ (alt.^\mathsf{T}
$$\mathbf M^\mathsf{T}$$, or^\intercal
$$\mathbf M^\intercal$$) [7] - Vector or matrix conjugate: Use
^*
$$\mathbf A^*$$
- Sets
- Isomorphism between 2 sets:
A \cong B
$$A \cong B$$, orA \simeq B
$$A \simeq B$$.
- Functions
- Example of function definitions:
$$\begin{array}{llll}
f : & \Z_N \to \Z_N & \qquad f^{-1}: & \Z_N \to \Z_N\\
& x \mapsto x^e \bmod N & & x \mapsto x^d \bmod N
\end{array}$$
|
$$\begin{array}{llll} f : & \Z_N \to \Z_N & \qquad f^{-1}: & \Z_N \to \Z_N\\ & x \mapsto x^e \bmod N & & x \mapsto x^d \bmod N \end{array}$$ |
- Inline function definition:
$$f : \{0,1\}^* \to \ZZ_{N}$$, $$x\mapsto b^x\bmod N$$
|
$$f$$ is defined as $$f : \{0,1\}^* \to \ZZ_{N}$$, $$x\mapsto b^x\bmod N$$ |
- Logic
\iff
and\implies
(do not use with other arrows symbols like\Leftrightarrow
))
$$A \iff B$$
$$P \implies Q$$
|
$$A \iff B$$ $$P \implies Q$$ |
References
- ↑ Frank Mittelbach,Michel Goossens: The LaTEX Companion — Second Edition. Addison-Wesley, 2004
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 ProofWiki, Symbols:Z — ProofWiki, http://www.proofwiki.org/wiki/Symbols:Z, 2013
- ↑ 3.0 3.1 3.2 Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography, 1997
- ↑ 4.0 4.1 Wikipedia, https://en.wikipedia.org/wiki/Tuple