MathJax: Difference between revisions
No edit summary |
|||
Line 8: | Line 8: | ||
On MediaWiki, MathJax is available either in the [http://www.mediawiki.org/wiki/Extension:Math Math extension] (as an optional renderer) or in the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax extension]. The later option is better since it allows for the more natural and lighter notation <code>$ ... $</code>. |
On MediaWiki, MathJax is available either in the [http://www.mediawiki.org/wiki/Extension:Math Math extension] (as an optional renderer) or in the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax extension]. The later option is better since it allows for the more natural and lighter notation <code>$ ... $</code>. |
||
;Update |
|||
:{{red|'''[[KaTeX]]'''}} seems a superior alternative to MathJax. |
|||
== Example == |
== Example == |
Revision as of 14:21, 18 April 2018
MathJax is a client-side javascript that allows for very nice rendering of formula written in LaTeX, much like jsMath.
The advantages of MathJax over jsMath:
- MathJax seems actively developed for now
- MathJax uses server-side fonts, and so does not require any configuration on the client side to get better results
- MathJax supports LaTeX macros
- Better LaTeX support
On MediaWiki, MathJax is available either in the Math extension (as an optional renderer) or in the MathJax extension. The later option is better since it allows for the more natural and lighter notation $ ... $
.
- Update
- KaTeX seems a superior alternative to MathJax.
Example
Some simple examples.
Note: these examples use the single dollar notation, which are disabled by default on this wiki. They are enabled on this page if the keyword
__MATHJAX_DOLLAR__appears somewhere in the page (even in html comment).
$\newcommand{\ud}{\,\mathrm{d}}$
formula | Textstyle ($...$ ) |
Displaystyle ($$...$$ )
|
---|---|---|
\frac{x}{1+\frac{x}{1+y}}
|
$\frac{x}{1+\frac{x}{1+y}}$ | $$\frac{x}{1+\frac{x}{1+y}}$$ |
\newcommand{\ud}{\,\mathrm{d}}
|
$\int_0^\infty f(x)\ud x$ | $$\int_0^\infty f(x)\ud x$$ |
An Identity of Ramanujan | $\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } }$ | $$\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } }$$ |
More complex example from [1]:
$ \newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)} $ We consider, for various values of $s$, the $n$-dimensional integral \begin{align} \label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps. By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align} \label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. \end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper. |
Troubleshooting
Conflict with other extensions
Conflicts with:
- footnote (from Debian repository)
- semantic wiki
This might be related to the bug:
The fix for footnote is to use recursiveTagParse
:
diff --git a/footnote.php b/footnote.php
index 4d5c052..17c7fab 100644
--- a/footnote.php
+++ b/footnote.php
@@ -77,7 +77,7 @@ function insert_endnotes( &$parser, &$text ) {
return true;
}
-function parse_footnote( $text, $params, $parser ) {
+function parse_footnote( $text, array $params, Parser $parser, PPFrame $frame ) {
$ret = "" ;
global $footnoteNotes , $footnoteCount, $footnoteRecursionGuard ;
@@ -88,8 +88,7 @@ function parse_footnote( $text, $params, $parser ) {
}
$footnoteRecursionGuard = true;
- $ret = $footnoteParserObj->parse( $text , $parser->getTitle() , $parser->getOptions(), false ) ;
- $ret = $ret->getText();
+ $ret = $parser->recursiveTagParse( $text, $frame );
$footnoteRecursionGuard = false;
$footnoteNotes[$footnoteCount] = $ret;
MathJax not loading on HTTPS
When loading a page from https, make sure to fetch MathJax javascript from https as well. For instance, in mediawiki, use the URL:
# Must use https CDN since the wiki is served through https
MathJax_Parser::$MathJaxJS = 'https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';