Cryptography: Difference between revisions
Jump to navigation
Jump to search
m (Mip moved page Crypto to Cryptography: Don't use abbreviation in title) |
|
(No difference)
|
Revision as of 11:00, 16 January 2014
Key Lengths
RSA
See recommendations from Bruce Schneier in Applied Cryptography (§7.2, [1]). See also [2]
Year | vs. industry | vs. Corporate | vs. Government |
---|---|---|---|
1995 | 768 | 1280 | 1536 |
2000 | 1024 | 1280 | 1536 |
2005 | 1280 | 1536 | 2048 |
2010 | 1280 | 1536 | 2048 |
2015 | 1536 | 2048 | 2048 |
Crypto performance
SW Speed on ARM
|
|
|
|
HW Speed on NXP SMX P5Cx08x
Based on linecard figures:
Algo | Size | Sign | Verify |
---|---|---|---|
RSA | 1024-bit | 99 ms (CRT) | 2 ms |
ECC | 192-bit | 20 ms | 30 ms |
DES3 | <40 µs | <40 µs | |
AES | 128/192/256 | 12/13/15 µs | 12/13/15 µs |
Crypto Libraries
NTRU
- A native crypto library on ARM MCU (i.e. embedded platform).
- Check http://ics.nxp.com/support/training/ntru.encryption.overview/pdf/ntru.encryption.overview.pdf
BouncyCastle
- Free Java crypto library
Crypto++
- A crypto library in C++
Crypto calculators
Online
- [http://www.unsw.adfa.edu.au/~lpb/src/AEScalc/AEScalc.html AES Calculator (java applet)
OpenSSL
#Computing AES-128 CBC No padding
echo "000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f" | xxd -r -p |openssl aes-128-cbc -iv 0 -K 01010101020202020303030304040404 -nopad | xxd -p
#Advanced mumbo-jambo
echo $(( (0x$(echo "1111111111f2222222222f3333333333f4444444444f5555555555f6666666666f7777777777f8888888888f9999999999f0000000000f80"|xxd -r -p |openssl des-cbc -iv 0 -K 0102030405060708 -nopad |xxd -p|tail -c 6) & 0x03ffff) + (0x10*2**18) ))
RSA
Generate RSA Keys
Under Linux, Install package racoon. Then you can use plainrsa-gen to generate a RSA key pair:
sudo plainrsa-gen -b 2048 -e 3
# : PUB 0sAQOTQ2zIwqxqjy4LRTwXEHB/WdxMrrcldKBAut3siLnuQMCDFGkwSfOc9v+77ibPDqtJQj0C8nys7+W1gI3o6yht+SjG+m16hZwvwl0Mt81E11Tca6k6py1wNmntxvePtotG3uk6MhqpluJAUeOxIL6YcHLcsgBi19gwHiU1YBFF2Q== : RSA { # RSA 1024 bits # pubkey=0sAQOTQ2zIwqxqjy4LRTwXEHB/WdxMrrcldKBAut3siLnuQMCDFGkwSfOc9v+77ibPDqtJQj0C8nys7+W1gI3o6yht+SjG+m16hZwvwl0Mt81E11Tca6k6py1wNmntxvePtotG3uk6MhqpluJAUeOxIL6YcHLcsgBi19gwHiU1YBFF2Q== Modulus: 0x93436cc8c2ac6a8f2e0b453c1710707f59dc4caeb72574a040baddec88b9ee40c08314693049f39cf6ffbbee26cf0eab49423d02f27cacefe5b5808de8eb286df928c6fa6d7a859c2fc25d0cb7cd44d754dc6ba93aa72d703669edc6f78fb68b46dee93a321aa996e24051e3b120be987072dcb20062d7d8301e2535601145d9 PublicExponent: 0x03 PrivateExponent: 0x622cf33081c8470a1eb22e280f604aff913d88747a18f86ad5d1e9485b269ed5d5acb84620314d134f5527f419df5f1cdb817e01f6fdc89fee79005e9b4770484de1f0c003dcbeac2290f28f5594022ec0ca86fd0618ec77d0db3f24e0ddd9339a77b1126f3256d9405ce86bcd456f4db2ef0c019a763abee74eb29cb161568b Prime1: 0xc37626fcd807b365f62e70d07ad1c2383f0a987f373eca93bbd723bd6676062263fef48a1c99efbb4e2d64d82fecc1756ea3845db786746d9145f5c267931f5d Prime2: 0xc0dfb6dd8fa7b43405ba80653c9d7f58f4a208ae7a430028c149eb523fccea9b7b2c6b146eb53795b3879069cd4bd62e7568c651e12b0b4c43e22387ee6c24ad Exponent1: 0x824ec4a890052243f9744b35a736817ad4b1baff7a29dc627d3a17d399a40416ed54a306bdbbf527897398901ff32ba39f17ad93cfaef8490b83f92c450cbf93 Exponent2: 0x80952493b51a7822ae7c5598d313aa3b4dc15b1efc2caac5d631478c2a889c67a772f20d9f237a63cd050af13387e41ef8f08436961cb232d7ec17aff4481873 Coefficient: 0x80c5560ddad756e413c19fb39c83370dfa3ca5881ebb0b0a5098fbd81b007e20c7b7a104b0aada943d2f5ae64409a9e3b677e10d5c20f414959a621852424b19 }
Another solution is to use openssl
:
openssl genrsa 256 | openssl asn1parse
This gives:
Generating RSA private key, 256 bit long modulus ....+++++++++++++++++++++++++++ ..........+++++++++++++++++++++++++++ e is 65537 (0x10001) 0:d=0 hl=3 l= 171 cons: SEQUENCE 3:d=1 hl=2 l= 1 prim: INTEGER :00 6:d=1 hl=2 l= 33 prim: INTEGER :BEF5D2D6550C4CF428A59A9099573D325D350F603E0C538B17CE6AFA7D2513B9 41:d=1 hl=2 l= 3 prim: INTEGER :010001 46:d=1 hl=2 l= 32 prim: INTEGER :316F66238264EACF126EBCB2CE5F9D41A74C7DE23069107B73CB664B505C0BD9 80:d=1 hl=2 l= 17 prim: INTEGER :F83F3AAC16EA5DFDCF8F08C85415EEA3 99:d=1 hl=2 l= 17 prim: INTEGER :C4EC941CCE450AF0B6ED7AA8D73225F3 118:d=1 hl=2 l= 17 prim: INTEGER :ECCFB472B1B185543809E480E5E5BE2D 137:d=1 hl=2 l= 17 prim: INTEGER :8CF9A4AADE8C14E1F0C31FEDA169383B 156:d=1 hl=2 l= 16 prim: INTEGER :1E8BD8FD9E1B1FC747B2C269ECA6CAA5
The following script will generate 10 keys for each size in the set {1024 1536 1664 1792 1920 2048 2304 2560 2816 3072 3328 3584 3840 4096}:
#! /bin/bash
#
# Script to generate a batch of RSA keys of various length
#
function gen-one-key()
{
openssl genrsa $1 | openssl pkcs8 -topk8 -nocrypt -outform DER -out "$2-pk8.der"
openssl asn1parse -inform DER -in "$2-pk8.der" > "$2-pk8.txt"
echo -e "\n############### Content of RSA Private Key object ###############\n" >> "$2-pk8.txt"
openssl pkcs8 -inform DER -in "$2-pk8.der" -nocrypt | openssl asn1parse >> "$2-pk8.txt"
}
for keylength in 1024 1536 1664 1792 1920 2048 2304 2560 2816 3072 3328 3584 3840 4096; do
for keyidx in $(seq 1 10); do
keyname="rsakey-${keylength}b-$(printf '%02d' $keyidx)"
echo "########## gen-one-key $keylength \"$keyname\""
gen-one-key $keylength "$keyname"
done
done
Factorize RSA
# RSA 192-bit
mod192=0xbdd0fcbce5f05aae8049f0699443b575c3119a00f712fd67
print "Factoring RSA 192-bit modulus"
print "mod192=",mod192
print "Using factor():"
time mod192.factor()
print "Using ecm.factor():"
time ecm.factor(mod192)
This gives:
Factoring RSA 192-bit modulus mod192= 4654283518078358737104805100407304944292151641869472955751 Using factor(): 67662411935248621468167032027 * 68786840210963828271650042213 Time: CPU 12.14 s, Wall: 13.55 s Using ecm.factor(): [67662411935248621468167032027, 68786840210963828271650042213] Time: CPU 0.00 s, Wall: 62.04 s
Other method based on the General Number Field Sieve (GNFS). There are several free ports on Linux:
- [4], links to other projects like GGNFS, MSIEVE, YAFU, up-to-date binaries, Python...
- Windows Factoring Software Binaries for GGNFS, GMP-ECM, MSIEVE, YAFU.
- YAFU, Yet Another Factorization Utility. Fastest for small number (< 90 digits). Also provides binaries for Windows & Linux!
- Msieve - One of the best apparently - see here and there
- See an excellent guide here, and compiled version here
- GGNFS, which is based on GMP library.
- kmGNFS - A General Number Field Sieve (GNFS) Implementation, based on NTL library.
- factor-by-gnfs
- Flint documentation refers to a program mpQS that would implement the quadratic sieve method.
For instance, using YAFU. First factorization is for RSA 192-bit, second is for RSA 256-bit:
$ unzip yafu-1.19.2.zip
$ cd yafu-1.19.2
$ chmod +X yafu-*
$ ./yafu-64k-linux64
>> factor(4654283518078358737104805100407304944292151641869472955751)
factoring 4654283518078358737104805100407304944292151641869472955751
...
Total factoring time = 8.2085 seconds
***factors found***
PRP29 = 67662411935248621468167032027
PRP29 = 68786840210963828271650042213
or even better with multi-threading:
$ echo "factor(67838243504816110168272546172330833508240822615334162379358840774428225237019)" | ./yafu-64k-linux64 -threads 24
factoring 67838243504816110168272546172330833508240822615334162379358840774428225237019
...
Total factoring time = 17.05 seconds
***factors found***
PRP39 = 255668459558430779725491264793137830843
PRP39 = 265336770996237319406691555335704774433
Polynomials Equations over F2
- Fast Exhaustive Search for Polynomial Systems over F2 (Charles Bouillaguet)
Misc Speed Info
HW | LM M/s |
NTLM M/s |
MD5 M/s |
Ref | |
---|---|---|---|---|---|
NVidia Tesla S1070 | 680 | 2600 | 1920 | [5] | |
NVidia GTX 295 | 250 | 1330 | 880-920 | [6] | |
NVidia GTX 285 | 195 | 795 | 570-585 | [7] | |
Intel Q6600 | 32 | 87 | 70 |